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SUMMARY 

This paper presents a composite multigrid method and its application to a geometrically complex flow. The 
treatment of the interior boundary conditions within a composite multigrid strategy is described in detail for 
a 1D model equation. For the Navier-Stokes equations a staggered grid technique is adopted for spatial 
discretization and a fractional step method is used for the time advance. Lid-driven cavity flows are used to 
demonstrate the effectiveness of the method. 
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1. INTRODUCTION 

Many methods for numerical simulation of fluid flows have been proposed and CFD (computa- 
tional fluid dynamics) has become a practical design tool. However, problems remain with regard 
to computational efficiency, accuracy and turbulence modelling. The most difficult problem may 
be mesh generation for geometrically complicated domains. 

Many schemes have been devised to cope with these issues. The multigrid method is one of the 
most efficient schemes for elliptic problems and has been applied to the Navier-Stokes equations. 
To deal with geometric complexity, domain decomposition has been proposed; its origins go back 
to Schwarz2 The idea is that a complicated domain be decomposed into subdomains whose 
geometry is simple enough to be easily gridded. 

In the present work we apply a combination of these two methods, i.e. a composite multigrid 
strategy, to flows in geometrically complicated domains. In particular we treat 2D unsteady 
laminar flows. The Navier-Stokes equations are discretized using second-order central differ- 
encing on a staggered grid in space and a fractional step time advance method. The velocity 
components are advanced explicitly and the pressure is obtained by solving a Poisson equation 
using a composite multigrid method. The momentum equations are integrated independently on 
each subgrid. Interpolation on the composite grid is accomplished with a Coons patch m e t h ~ d . ~  
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Prior to solving the Navier-Stokes equations, we investigate the effectiveness of the composite 
multigrid technique for a 1D model equation. We also discuss the interior boundary conditions. 

After demonstrating the properties of the composite multigrid method, we apply it to the 
Navier-Stokes equations. First we check the accuracy of the method for lid-driven cavity flow at 
Re = 3200 and evaluate the error. Then we simulate geometrically complex cavity flows. 

2. THE GOVERNING EQUATIONS 

The 2D unsteady incompressible Navier-Stokes (N-S) equations can be written in the following 
form in a curvilinear co-ordinate system: 

a4 8~ aF aH, a ~ , ,  ap aQ 
at a t  a? a t  a? a t  a? 
-+-+-+-+-+-+-=0, 

where 

4=qlJ, q=cu, VlT, J = 5 x v y  - r y v x ,  

u and u are the Cartesian velocity components along the x- and y-axes and l and q are arbitrary 
curvilinear co-ordinates. J is the Jacobian. Subscripts x and y stand for derivatives with respect to 
x and y .  The second and third terms of the LHS of (1) are the convection terms, so that E and 
F are 

E= U 4 ,  F =  V i ,  (34 

where 

u = u 5, + u 5, , v= uq, + O?, 

are the contravariant velocity components; however, we shall use the Cartesian velocity compon- 
ents as the primary variables. The fourth and fifth terms are the pressure gradient terms; H, and 
H, can be written as 

where p is the pressure. The last two terms are the viscous terms; P and Q have the form 

where Re is the Reynolds number. The above equations have to be solved simultaneously with the 
continuity equation 
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3. NUMERICAL SCHEME 

3.1. Diferencing in space and time 

The momentum equations for the velocity components u and u can be written as 

where L" and L" are the sum of the convection, pressure gradient and viscous diffusion operators. 
Multiplying (7) by tx or qx and multiplying (8) by ty or g, and summing, we get the equation for 
U and V: 

a i  u 
a t J  v qx f t Y  

- - ( ) + ( '. ) L " ( U ,  v, . . . , p )  + ( "> LV(u,  v, . . . , p )  = 0. (9) 

To discretize this equation in space, we use second-order central differencing on a staggered 
grid in which the pressure node is located at the cell centre and the contravariant velocity 
components U and V are located on the cell boundaries as shown in Figure 1. Control volume I is 
used for the x-momentum equation and control volume I1 for the y-momentum equation. In 
order to evaluate u and u at the velocity nodes, we must evaluate U and Vat those nodes, but on 
a staggered grid U and Vare known at different points. Maliska and Raithby5 used the average of 
the values at four surrounding points to obtain the velocity component on a node of the other 
component. For example, to evaluate Vat the point A of Figure 1, they took an average of I/ at 
B, C, D and E. We adopt this method. 

After evaluating U and V, we get u and u from the following relation: 

For discretization of the convection terms we use the QUICK scheme.6 

Figure 1. Staggered grid system for velocity and pressure 
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Time advance is carried out using the fractional step method. Let u", u' and p" be the velocities 

First we evaluate UZ and V n + l  by explicit integration of (9): 
and pressure at time step n and assume that u" and u" satisfy the continuity equation. - 

-( 1 u )-=A( " + l  U ~ - A t [ L ' ( u " , v " , .  . . , p " ) ( c x ) + L u ( ~ " , ~ " , .  . . , p " ) ( : : ) ] .  
J V  J V  ?X 

This is the predictor of the MacCormack scheme' and many others. 
The corrector for the MacCormack scheme is 

5 t  (')='{' 2 7 v  (')"+:( ;)=-At [ L"(u"+l, u X ,  , . . , p " )  (:I) 
- -  

- -  - -  
where u"", u " + l  are computed from Un+', Y " + l  using (10). 

Using (1 l), equation (12) can be rewritten as 

The new velocity field 6, u" does not satisfy the continuity equation (10) so we introduce 
a pressure correction and compute the new velocity field U"", V"+' and u"", u"+' via (10) from 

(14) 
where AHcu = H;: - H&, etc. are determined by forcing U n + l  and V"+l to satisfy the continuity 
equation. In this way we obtain a pressure equation (strictly speaking, a pressure increment 
equation) 

(15) 

This is a Poisson equation for Ap = p n + l  - p "  and can be solved by the multigrid method. On 
a Cartesian staggered grid no boundary condition is needed for the pressure; in a curvilinear 
co-ordinate system a pressure boundary condition is usually needed. However, if in the latter case 
the co-ordinate system is orthogonal at the boundary, the need for a boundary condition 
disappears. In this work we require grid orthogonality at the boundary so no boundary condition 
is needed. However, the discrete system of equations is singular. For a simplicity of coding we use 
a fictitious pressure node outside the computational domain to eliminate the singularity. Further- 
more, to ensure uniqueness, we set the solution at an arbitrary point (e.g. ((, ?)=(1/2, 1/2)) to 
zero. Other methods of desingularizing the system are available. 
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3.2. Multigrid method for the pressure 

Multigrid’ is a well-known method for solving elliptic equations. We apply it only to the 
pressure equation. The essential idea of the multigrid method is reduction of the error using 
several grids of different sizes; high-frequency components of the error are removed by smoothing 
on a fine grid and low-frequency components are damped on coarser grids. 

The system of linear equations (15) can be written 

L4 =.L (16) 
where 4 is the solution and f is the source (forcing) term. 

dk and 
After we relax (16) using a suitable smoother on the finest grid, we get an approximate solution 

L k p = f - R k ,  (17) 

where R is the residual and superscript k stands for the grid level; k = k,,, corresponds to the 
finest grid and k -  1 to a grid twice as coarse. The smoother should reduce the high-frequency 
components of the error rapidly. Subtracting (17) from (16), we get an equation for the error Z k :  

~ k g k  = ~ k ,  Z k  = 4 - p. (18) 

- - - - - - - -  _ - - - - -  - - - _  
I1 I I1 I I 

STENCIL FOR PROLONGATION 

Figure 2. Stencils of the restriction and prolongation operators used in the multigrid method 
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Next we remove lower-frequency components of Z. To do that., (18) is solved on grid k- 1: 

7 , (19) L k - 1  "k-  1 = R k - l  R k - l = I k - I R k  e k 

where I!-1 is a restriction operator. After smoothing i? on the coarse grid, e" is interpolated onto 
the fine grid by interpolation or prolongation: 

;k= 1:- Zk- 1, (20) 

fp k = fp:,#j + 2. (21) 

(22) 

(23) 

where I!- is an interpolation operator. The solution is then updated 

In the present work, since we use a staggered grid system, 1 L - I  and 1;- are defined as follows: 
k - 1  k 

I k  fpu, jc=(fp$, jf + fp&+ 1, jf -k 4:. jf + 1 + fp$+ 1, jf + 1 )I4, 
where if= 2ic - 1 and jf= 2jc - 1, 

I k - l f p ~ , j ~ = ( 9 f p i k c , j c + 3 f p i k c + l , j c + 3 f p i c , j ~ + l + f p i k e + l , j c + ~ ) / 1 6 ,  k k 

where ic = 1 + if /2 and j c  = 1 + j f / 2  (see Figure 2). 
The method is readily extended to larger numbers of grids. 

4. DOMAIN DECOMPOSITION TECHNIQUE 

In order to solve the Navier-Stokes equations, we have to divide the domain using a suitable grid 
system. For flow fields that do not have simple geometry, covering the entire domain with a single 
grid is difficult. 

Domain decomposition is a method of coping with this problem. In this technique a geo- 
metrically complicated domain is divided into several simpler ones. Schwarz' proposed an 
alternating solution procedure for elliptic problems. Since this method uses Dirichlet conditions 
on the interior boundaries, it requires that the subdomains overlap. 

Van der Wijngaart * revised the Schwarz method using asymmetric interior boundary condi- 
tions. If Neumann conditions are used for the interior boundary condition of grid I, Dirichlet 
conditions are applied on grid 11. He showed that this treatment allows the requirement of 
subdomain overlap to be removed. More recently, Lionsg developed a theory of the Schwarz 
method on non-overlapping subdomains. 

A few applications of this method to fluid flow simulation exist. Meakin and Street lo  simulated 
a 3D environmental flow using a composite grid method. Van der Wijngaart' developed the 
SWAPR (Schwarz alternating procedure revised) method which uses asymmetric boundary 
conditions on the interior boundary. 

In the present work we combine domain decomposition with the multigrid method. Henshaw 
and Chesshire 
and Perng and Street simulated flows in complicated domains using a combination of explicit 
time advance on individual grids and a multigrid pressure solver on the complete composite grid. 
They showed the effectiveness of the composite multigrid method for geometrically complicated 
flows including 3D problems. However, they restricted the domain decomposition by requiring 
that grid nodes in overlapping domains belong to both grids. This restriction reduces freedom in 
grid construction and is removed in the present work. On the interior boundaries Perng and 
Street adopted Neumann boundary conditions but also used Dirichlet conditions. 

Before describing the Navier-Stokes solver, we consider the composite multigrid method for 
a simple 1D model problem. 

solved the Poisson equation using a composite multigrid technique. Perng 
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4.1. Multigrid composite grid technique ( I D  model problem) 

Consider the following 1D model problem: 

y“=2 (O<x<l), with y(O)=O, y’( l )=l ,  

The exact solution is 
y=x(x-1). 

We choose two overlapping grids, one from x=O to x=O.6 and the other covering x=O.4 to 
x = 1; we call the former grid I and the latter grid 11. Each grid is divided into 16 equal elements, so 
the finest grid size is 0-0375. Three levels are used on each grid; the finest has 16 intervals and the 
coarsest four intervals. In this 1D problem we adopt a regular grid, so the coarse grid nodes 
coincide with the fine grid nodes. 

To use Schwarz iteration, we have to estimate the interior boundary value by interpolating 
from the other grid. Two solution methods are considered. In the first, interior boundary value 
communication is limited to the finest grid and the coarse grid smoothings are carried out 
independently. In the second method, data communication at the interior boundary is allowed at 
every grid level. Hereafter we call the former the incomplete composite multigrid (or simply 
ICMG) method and the latter the complete composite multigrid (or CCMG) method. Henshaw 
and Chesshirell used the CCMG method while Perng and Street” used the ICMG method. 

The algorithms for the two methods are as follows. 

ICMG method 

(i) Iterate the equation on grid I using a local V-cycle with a guessed interior boundary value. 
(ii) The interior boundary value for the finest level of grid I1 is obtained by interpolation on 

grid I. 
(iii) Iterate the equation on grid I1 using a local V-cycle. 
(iv) Find the boundary condition at the finest level of grid I by interpolation on grid 11. 
(v) Repeat steps (i)-(iv) until the solution converges. 

CCMG method 

(i) Iterate the equation on the finest level of grid I using a guessed interior boundary value. 
(ii) The interior boundary condition for the finest level of grid I1 is found by interpolation on 

grid I. 
(iii) Iterate the equation on the finest level of grid 11. 
(iv) Interpolate to find the grid I boundary condition. 
(v) Repeat steps (i)-(iv) (Schwarz iteration on the finest grid level). There is no need to iterate 

to convergence. In the test computation we iterated twice. 
(vi) The residual on each composite grid is restricted to the coarser grid and the correction is 

iterated using procedures (i)-(v). 
(vii) After solving at the coarsest grid level, work back to the finer grids. 
(viii) Iterate procedures (i)-(vii) (V-cycle) until the solution converges. 

4.2. Interior boundary condition for multigrid composite grid technique 

At the interior boundaries we tried two types of conditions, Neumann and Dirichlet. 
First consider the ICMG method, In this case data communication is limited to the finest grid 

and the interior boundary condition is found as follows. 
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For the Dirichlet boundary condition case, 

Yfieht = ITP(y"), Y L t  = IWY'), 

where ITP is an interpolation operator, y' means the solution on grid I and Yfight is the right 
boundary value on grid I. 

We can also introduce an overrelaxation parameter to accelerate convergence as was done by 
Tang: l3 

y,'ight = wlTP(y") + (l - 0 )(Yfight)old * (27) 

In a similar manner we find y::rt. 
The case of Neumann boundary conditions is similar: 

dyfight/dx = ITP( dy"/dx) 

or 

dyfight / d x =  0 ITP(dy"/dx ) + (1 - 0)  (ddi&/dX)old - (28) 
In the ICMG method, relaxation on each set of coarse grids is carried out independently; thus 

the interior boundary condition for the error is 

Z;ight = 0 (Dirichlet), 

de"fight/dx = 0 (Neumann). 

Next consider the CCMG method. The boundary condition on the finest grid level is found as 
in the ICMG case. On the coarser grids the treatment of the boundary condition is somewhat 
more complicated. 

After iterating the correction equation on the coarse grid, the result satisfies the following 
relation : 

(Y xew )right = ITP ( Y k w )  (Dirichlet), 

(dy~e,/dx)right=ITP(dy&w/dx) (Neumann). 

In other words, instead of (29), the boundary condition on the error on the interior boundary 
should be 

(YAld + Z'),i&t = ITP( yA&) 4- ITP( 2") (Dirichlet), 

(dy;,,/dx + di?'/dx)ri,ht = ITP( dy;\,/dx) + ITP( de""/dx) (Neumann). (30) 

Again we can accelerate the boundary conditions: 

kl= oZ* + (1 - W)Z;,ld, 

where Z* = ITP(yA!d) + ITP( e"")-yAId. The Neumann boundary condition can be treated in a 
similar manner. 

Although (30) is the exact boundary condition for the error, we may approximate it in a way 
that makes data communication at each grid level independent, namely 

ifighl = ITP( ZII)  or dZ,'i,h,/dx = ITP(dP/dx). (31) 
In the present study we tested both (30) and (31). 
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4.3. Remarks on the ID model problem 

Next we describe some 1D test computations. The relaxation method was Gauss-Seidel. Two 
sweeps were performed at each grid level. On the coarsest grid, iteration was carried to 
convergence. For the ICMG method, one V-cycle was made on each subgrid and the total 
number of Schwarz iterations was limited to 20. For the CCMG method, two Schwarz iterations 
were performed at each grid level and 10 V-cycles were carried out. Thus, the work is almost the 
same for the two methods. Because the CCMG method requires data communication on each 
grid level, its cost is slightly larger. 

Now we present results for the 1D test problem. The test computations are (a) the ICMG 
method with Dirichlet interior boundary conditions (IBCs), (b) the ICMG method with 
Neumann IBCs, (c) the CCMG method with Dirichlet IBCs (equation (30)), (d) the CCMG 
method with Dirichlet IBCs (equation (31)), (e) the CCMG method with Neumann IBCs 
(equation (30)) and (f)  the CCMG method with Neumann IBCs (equation (31)). We show the 
normalized errors after 20 Schwarz (one V-cycle) iterations for the ICMG method and after two 
Schwarz (10 V-cycles) iterations for the CCMG method to judge the rapidity of convergence. The 

0 . 0  0 . 2  0 . 4  0 . 6  0 . 8  1 . 0  1 . 2  1 . 4  1 . 6  1 . 8  2 . 0  

0 

Figure 3. Comparison of errors in the ICMG and CCMG methods after 20 Schwan one-V-cycle iterations for the ICMG 
method and two Schwarz 10-V-cycle iterations for the CCMG method with Dirichlet IBCs and Neumann-Dirichlet 

boundary conditions at the domain boundary 
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Figure 4. Comparison of errors in the ICMG and CCMG methods after 20 Schwarz one-V-cycle iterations for the ICMG 
method and two Schwarz 10-V-cycle iterations for the CCMG method with Neumann IBCs and Neumann-Dirichlet 

boundary conditions at the domain boundary 

error is defined by 

The errors are given as functions of the acceleration parameter w. Figure 3 shows the errors 
with Dirichlet IBCs for the ICMG and CCMG methods and Figure 4 gives the errors with 
Neumann IBCs for the same methods. Error I is the error on the finest level of subgrid I. In both 
figures, results obtained with both (30) and (31) are shown for the CCMG method. The ICMG 
method converges faster with Neumann IBCs than with Dirichlet IBCs. In both cases the 
convergence is accelerated by overrelaxation of the interior boundary values. The optimal 
relaxation parameters are o N 1.6 in the Dirichlet IBC case and w N 1.3 in the Neumann IBC case. 

The ICMG method converges faster than the CCMG method, especially with Dirichlet IBCs. 
For both types of IBCs, (30) gives faster convergence than does (31); the difference in CPU time 
per time step is very slight, so the method based on (30) is faster overall. Interior boundary value 
acceleration is less effective in the CCMG method. With Neumann IBCs the best convergence in 
the CCMG method is obtained with o = 1. 
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Figure 5. Comparison of errors in the ICMG and CCMG methods after 20 Schwarz one-V-cycle iterations for the ICMG 
method and two Schwarz 10-V-cycle iterations for the CCMG method with Dirichlet IBCs and Dirichlet boundary 

conditions at the domain boundary 

However, these trends change with the external boundary conditions at y=O and 1. For 
instance, when Dirichlet boundary conditions are given, i.e. y ( 0 )  = y (  1) = 0, with Dirichlet IBCs, 
the error as a function of o is shown in Figure 5. The CCMG method converges much faster than 
in the previous case. However, for optimal o (in this case o= 1.5) the ICMG method remains 
faster. 

The convergence rate also depends on the size of the overlap region. For these tests the external 
boundary conditions were y(0) = 0, y'(1) = 1 and Neumann IBCs were used. Test computations 
were made with 20%, 30%, 40% and 50% overlap. Figure 6 shows the error for the ICMG 
method after 20 Schwarz iterations as a function of the overlap. The number of grid points and 
the number of levels are the same as before, i.e. 16 equal elements and three multigrid levels. The 
optimal acceleration parameter is only weakly affected by the amount of overlap, but the 
convergence is much faster when the overlap is large. 

Finally we compared the convergence speed between a single (non-composite) grid and 
a composite grid. We solved (24) using a 32-point single grid and a 50% overlap composite grid. 
The finest level of the composite grid has 24 intervals of the same size as the finest non-composite 
grid. Three levels were used in both cases. The ICMG method was used on the composite grid 
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Figure 6. Dependence of convergence rate on the size of the overlap region for the ICMG method 

with a= 1-2. Figure 7 shows the maximum residual on each subgrid. Since we must guess the 
initial IBCs for the ICMG method, the residual at the first iteration is much bigger than in the 
non-composite grid method. This requires the ICMG method to take more iterations. However, 
the convergence rate is almost same, so the cost increase is almost entirely due to the overlap. 

4.4. Composite multigrid method for a 20 model problem 

The method can be applied to 2D boundary value problems. Since we intend to apply the 
method to the pressure equation, the Poisson equation was chosen as a test problem. In the test 
computation the domain consisted of two squares shifted diagonally by 40% of the diagonal 
length. The physical domain and the mesh are shown in Figure 8. 

Neumann boundary conditions were applied at the entire boundary of the computational 
domain. We introduced four singularities as the forcing; their strengths add to zero for con- 
sistency with the boundary condition l@/an = 0 

For the interior boundary condition we can use Dirichlet or Neumann conditions. Because the 
fine grid nodes do not coincide with nodes of the coarse grid, if we use Dirichlet boundary 
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- singlegrid 
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Figure 7. Comparison of convergence rates of the non-composite and composite multigrid methods 

conditions on a staggered grid, it is difficult to give boundary conditions for the error. Also 
because Neumann boundary conditions are applied on the physical boundary, the programming 
is simpler if Neumann IBCs are used. Finally, as shown in the 1D test problem, Neumann IBCs 
give faster convergence, so this is the choice we shall make. 

Now let us describe the implementation of the interior Neumann boundary conditions. As 
mentioned in Section 2, we used fictitious points outside the computational domain. In Figure 9, 
suppose points A and B are members of grid I contained in grid 11. In the ICMG method, values 
at A and B are obtained by interpolating grid I1 data. The boundary condition for the error 
requires its gradient to be zero. 

In the CCMG method we need coarse grid boundary information as well. To find the boundary 
condition at point E in Figure 9, the error at points F and G is interpolated. Further, the solution 
on the fine grid at points A, B, C and D is interpolated to give the derivative at points H and I. 

For interpolation we used the Coons patch technique4 with second-order accuracy. Although 
analysis indicates that a third-order method should be used, we find that this method is 
sufficiently accurate; it does, however, lead to some minor discrepancies in the results which will 
be discussed below. Figure 10 shows the stencil for second-order Coons patch interpolation. P in 
Figure 10 is the point at which interpolated data are required; a and /3 are the local co-ordinates 
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Figure 8. Physical domain and mesh for the 2D composite grid test computation and the box-box cavity flow 

GRID i I1 

I 
I 

Figure 9. Stencil for interpolation of interior boundary conditions 

of P. The interpolated data can be expressed as 

4( P )  = (1 - cr ) D  + aB + (1 - B )  A + BC - (1 -a)( 1 - B)  4(a) - (1 - 8) cr4( b) - aB4(c) - (1 -.)/I+( d), 

where 4(a)  is the value at the corner ‘a’. The local co-ordinates (a, 8) of the four corners are 
a =(O, 0), b = (1,0), c = (1, 1) and d = (0, 1). A,  B, C and D are second-order polynomials along the 
edges ab, bc, cd and da respectively (see Figure 10). 

(34) 
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Figure 10. Stencil for Coons patch interpolation 

Figure 11. Converged solution to the 2D Poisson equation 

We now show the results of a test computation. In Figure 11 the converged solution is shown. 
The solutions completely coincide in the overlap domain. In Figure 12 the maximum residual in 
each subgrid is shown as a function of iteration number. The fastest convergence is obtained with 
the ICMG method with o= 1.1. As in the 1D problem, the effect of o on convergence is much 
weaker for the CCMG method than for the ICMG method. Of the interior boundary conditions 
applied to the CCMG method (30) yields the fastest convergence. The ICMG method converges 
faster than the CCMG method. Thus we used the ICMG method in the Navier-Stokes solver. 

To investigate the speed of the composite grid method relative to a single grid, we solved the 
four-singularity problem in a square domain. V-cycle iterations were performed for the single- 
grid method and 10 Schwarz (one V-cycle) iterations were carried out for the ICMG method. 
Figure 13(a) shows the result obtained using a single (33 x 33) grid and Figure 13(b) shows the 
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Figure 12. Comparison of the maximum residual after 20 Schwarz one-V-cycle iterations for the ICMG method and two 
Schwarz 10-V-cycle iterations for the CCMG method in the 2D test problem using Neumann IBCs and Neumann 

boundary conditions at the domain boundary 

result using the ICMG method. The composite grids are each 33 x 25 and, in the overlap region, 
two subgrids coincide. The two solutions agree. The single-grid method required 29.1 s on 
a SUN-3 with a floating point accelerator and the ICMG method required 61.5 s. Computations 
were performed using double precision. The maximum residual after 10 V-cycle computations on 
the single grid is 4.38 x lo-'. For the ICMG method the maximum residuals on the two grids 
after 10 Schwarz iterations are 9.43 x and the maximum difference of the 
gradient on the interior boundary is 1.17 x lo-'. 

and 4.20 x 

5. COMPOSITE MULTIGRID METHOD FOR THE N-S EQUATIONS 

The composite multigrid method is used to solve the pressure equation. The momentum 
equations are updated explicitly on the finest grid. Because we use the QUICK scheme, we need 
two fictitious points outside the boundaries; the velocity components are obtained by interpola- 
tion using Coons patches at these points (see Figure 14). There is a difference between the stencils 
for pressure and velocity interpolation; this is shown in Figure 15. For pressure interpolation the 
stencil contains nine cells, while for velocity interpolation only one cell is used. Velocity data at 
the cell corners are found by extrapolating the adjacent velocity data. 
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Figure 13(a). Converged solution to the 2D Poisson equation on a single grid 
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Figure 13(b). Converged ICMG solution to the 2D Poisson equation 
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given by boundary conditions 

1 1  
(fictitious points) 

given by interpolation if included 
in another subgrid 

Figure 14. Stencils for momentum equation at the boundary 

i i+l 

STENCIL FOR VELOCITY INTERPOLATION 

Figure 15. Stencils for Coons patch interpolation of pressure and velocity 
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6. CHECK OF NUMERICAL SCHEME OF N-S SOLVER 

In order to check the computer program, we computed lid-driven cavity flow at Re=3200. 
First we used a single grid. The computations were carried out on 33 x 33, 41 x 41,49 x 49 and 
65 x 65 grids with At =0~02,0-015,0~015 and 0.01 respectively. The convergence criterion required 
the maximum increment of velocity in one time step to be less than 1 x A CYDRA-5 
minisupercomputer was used; for the 33 x 33 case, 9500 time steps and 160 min of CPU time were 
required to reach steady state. Except in the early stages of the calculation, in which the pressure 
solver was limited to five V-cycles, we required that the maximum change in the pressure between 
iterations be less than 1 x lo-*. 

The convergence error can be estimated as14 

where A1 is the largest eigenvalue (spectral radius) of the iteration matrix. In the Poisson solver 
with the Gauss-Seidel method it can be approximated by Izl =.nZ/N2,  N being the number of grid 
points. For the momentum equations we cannot evaluate A1 in advance but, if the maximum 

0.25 

0.00 

-0.25 

-0.50 
0 . 0  0 . 0 0 0 2 5  0 . 0 0 0 5 0  0 . 0 0 0 7 5  4 . 0 0 1 2 5  

A X 2  

Figure 16. Centreline velocity in the lid-driven cavity flow as a function of grid size 
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Figure 17(a). Velocity distribution on the centreline of the cavity for the non-composite grid at Re= loo0 

, . . . .  ...... , . . . .  
. _ . _ _ .  

Figure 17(b). Velocity distribution on the centreline of the cavity for the composite grid at Re= loo0 
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eigenvalue is real, we can use the estimate ' 

The results show that 1'-1 ~ 0 ( 1 0 - ~ ) .  Thus we estimate the convergence error as l oe3 .  

a Taylor series about the exact solutions: 
Since the present scheme has second-order accuracy in space, the solution can be expanded in 

(37) 
On a sufficiently fine mesh the error should be proportional to  AX)^. Figure 16 shows the 
velocity at several points on the vertical centreline as a function of the grid size; the error is 
proportional to ( A x ) 2  as expected. Results obtained by Ghia et ~ 1 . ' ~  are also shown. We 
estimated the exact velocity by Richardson extrapolating the value to Ax = 0; the values obtained 
are a little smaller in absolute value than Ghia et al.'s values. The difference is largest near the 
driven lid but is less than 1.5%. The reason for these differences is unknown. 

Next we show results of the multigrid composite grid method for cavity flow at Re= lo00 on 
the 33 x 33 grid. The flow domain was decomposed into two subgrids of 25 x 33 grid nodes each; 
the ICMG method was used to solve the pressure equation with the convergence criterion 
mentioned above. In this case the two grids coincide in the overlap region; the purpose of this case 
is merely to demonstrate the composite grid method and the method is essentially the one of 
Perng and Street.3 Figure 17(a) shows the velocity profile at steady state on the single grid, while 
Figure 17(b) shows the velocity distribution found by the composite grid technique; the arrows 
coincide so completely in the overlap region that they appear to be single arrows. In the 
single-grid case, 2590 time steps were required to reach steady state with At = 002; 60 time steps 
require 1 min of CPU time. For the composite grid case, nine time steps require 1 min of CPU 
time and 2562 iterations were needed to reach the steady state with At = 0.02. The difference is due 
to the composite grid having 1-5 times as many points as the single grid and, in the single-grid 
computations, only one V-cycle was allowed per time step, while in the composite grid com- 
putations we allowed five Schwarz iterations per time step. These two profiles agree and there is 
no discrepancy in the overlap region. Thus the accuracy of the scheme is confirmed. 

# =  A AX)^   AX)^ + * * a .  

7. APPLICATION TO COMPLEX FLOW FIELDS 

Now we show some results for geometrically complex flows. First we solved a lid-driven two-box 
cavity problem. The physical domain used is the same as in the 2D two-box test computations 
(see Figure 8). The edge length and lid speed are unity. The upper lid is driven towards the right 
while the lower lid is driven towards the left. The Reynolds number is 1OOO. Each square had 
33 x 33 nodes. The time step At was 0-02, making the Courant number less than 0.64 everywhere. 
In the computation of the pressure the ICMG method with o= 1.1 was used and five Schwarz 
iterations with one V-cycle were allowed at each time step. In 1 min, 5.6 time steps are taken on 
the CYDRA-5. 

Figure 18(a) shows the velocity profile at t=6; there are two symmetric vortices. At t=9 the 
two vortices have grown bigger and the centres closer, as shown in Figure 18(b). Eventually the 
two vortices merge into one large vortex. The velocity profile at t = 12, shown in Figure 18(c), 
contains one deformed large vortex. This vortex causes two large recirculating flow regions in the 
corners. Figure 18(d) shows the steady state velocity profile and Figure 18(e) the corresponding 
vorticity distribution. Figure 18(f) shows the pressure distribution; the pressure contours on the 
two grids differ slightly. The pressure is obtained by solving (15); the surface integral of the RHS 
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Figure 18(a). Velocity distribution in the two-box cavity flow at Re=1000 and t = 6  

Figure 18(b). Velocity distribution in the two-box cavity flow at Re=1000 and t = 9  



Figure 18(c). Velocity distribution in the two-box cavity flow at Re= lo00 and r =  12 

Figure 18(d). Velocity distribution in the two-box cavity flow at Re= lo00 and t=60 
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Figure We). Vorticity distribution in the two-box cavity flow at Re=1000 and t=W, AC=l, on11 contours for 
- 20 < [ < 20 are shown 

of (15) on the overlap domain must be the same on the two subgrids, i.e. 

l S n , V f i  dS=jsn,,V6 dS. (38) 

Since the scheme has second-order spatial accuracy, (38) must be obeyed to at least second order 
and the interpolations on the interior boundaries should be more than second-order-accurate. In 
the present work we used the Coons patch method with second-order peripheral functions, which 
is the probable cause of the small pressure discrepancies in the overlap region. In the solution of 
the Poisson equation, for which the results are shown in Figure 11, the Coons patch appears not 
to cause any discrepancy in the overlap region. We believe that this is due to the absence of 
sources in the overlap region. On the other hand, in the Navier-Stokes solution the Poisson 
equation contains sources in the overlap region and the second-order accuracy of the interpola- 
tion scheme produces small discrepancies; however, these are of the order of the accuracy of the 
scheme and are not important. The errors might become significant if a flow with high-frequency 
oscillations were simulated with this method. 

Next we show results for an annulus-box combined cavity flow. Figure 19 shows the flow 
domain and grid. The Reynolds number is loo0 based on the length of the square edge. The outer 
lid of the annular section was driven counterclockwise and the left edge of the square section 
moved vertically upwards. Figures 20(a) and 20(b) show the velocity and vorticity distributions at 
t = 49. Two large stable vortices occupy the flow domain. In the overlap domain the velocities on 
the two grids agree very well. This shows the usefulness of the composite grid strategy for 
geometrically complicated flows. 
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Figure 18(f). Pressure contours in the two-box cavity flow at Re= lo00 and t=60; Ap=0-02 

Figure 19. Domain and grid for the annulus-box cavity flow 



Fig ure 20(a). Velocity distribution in the annulus-box cavity Row at Re= lo00 and t = 49 

Figure 20(b). Vorticity distribution in the annulus-box cavity flow at Re=1000 and t=49 
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8. CONCLUSIONS 

To simulate unsteady flows in geometrically complex domains, we discretized the 2D unsteady 
Navier-Stokes equations using a staggered grid in curvilinear co-ordinates; the accuracy is 
second-order. 

The effectiveness of the composite multigrid approach for geometrically complex flows was 
demonstrated. It may be used both for flows in which an accurate time history is required or for 
the computation of steady state flows. We investigated the convergence of the ICMG and CCMG 
methods for a 1D problem and showed that acceleration of the interior boundary values is very 
effective. The optimal value of the acceleration parameter depends on the boundary conditions. 
In the 2D problem the ICMG method again has better convergence than the CCMG method; 
however, acceleration of the ICMG method is also effective. 

Finally we simulated two complex cavity flows at Re= lo00 to demonstrate the effectiveness of 
the method for solving the Navier-Stokes equations in geometrically complex domains. 
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